日期:2021年8月31日
來源:賓夕法尼亞州立大學
摘要:賓夕法尼亞州立大學的一組研究人員在鎂取代的氧化鋅中證明了鐵電性,這意味將會出現(xiàn)一種新的材料系列,可以改善數(shù)字信息存儲并使用更少的能源。
賓夕法尼亞州立大學的一組研究人員在鎂取代的氧化鋅中證明了鐵電性,這意味將會出現(xiàn)一種新的材料系列,可以改善數(shù)字信息存儲并使用更少的能源。
制造鐵電鎂取代氧化鋅薄膜的部分過程包括:(左)顯示從金屬源濺射沉積薄膜的圖像;(中心)薄膜電容器的鐵電磁滯回線,在零場下顯示出兩種剩余極化狀態(tài);(右)原子力顯微鏡圖像顯示納米尺度的光滑表面和非常細粒度和纖維紋理的微觀結(jié)構(gòu)。圖片來源:賓夕法尼亞州立大學材料研究所
鐵電材料是自發(fā)極化的,因為材料中的負電荷和正電荷趨向于相反的兩側(cè),并且在施加外部電場時會重新定向。它們會受到物理力的影響,這就是為什么它們可用于按鈕式點火器,例如燃氣烤架中的按鈕式點火器。它們還可以用于數(shù)據(jù)存儲和記憶,因為它們在沒有額外功率的情況下保持一種極化狀態(tài),因此是低能量數(shù)字存儲解決方案。
賓夕法尼亞州立大學材料科學與工程教授 Jon-Paul Maria 說:“我們已經(jīng)確定了一個新的材料系列,我們可以用這些材料制造微型電容器,我們可以設(shè)置它們的極化方向,使它們的表面電荷為正或負。該設(shè)置是非易失性的,這意味著我們可以將電容器設(shè)置為正值,它保持正值,我們可以將其設(shè)置為負值,它保持負值。然后我們可以回來確定我們?nèi)绾卧O(shè)置該電容器,例如,一個小時前。"
這種能力可以實現(xiàn)一種不像其他形式那樣耗電的數(shù)字存儲形式。“這種類型的存儲不需要額外的能源,"瑪麗亞說:“這很重要,因為我們今天使用的許多計算機存儲器需要額外的電力來維持信息,而我們在信息上使用了大量的美國能源預算。"
新材料由鎂取代的氧化鋅薄膜制成。該薄膜是通過濺射沉積生長的,在這個過程中,氬離子被加速到目標材料,以足夠高的能量撞擊它,使原子脫離含有鎂和鋅的目標。游離的鎂和鋅原子在氣相中移動,直到它們與氧氣反應(yīng)并聚集在涂有鉑的氧化鋁基材上并形成薄膜。
研究人員研究了鎂取代氧化鋅作為增加氧化鋅帶隙的一種方法,這是一種對制造半導體很重要的關(guān)鍵材料特性。然而,從未探索過該材料的鐵電性。盡管如此,研究人員認為,根據(jù)埃文普大學教授、陶瓷科學與工程 Steward S. Flaschen 教授 Maria 和 Susan Trolier-McKinstry 提出的“鐵電無處不在"的想法,該材料可以制成鐵電材料。作者在紙上。
“一般來說,鐵電通常出現(xiàn)在從結(jié)構(gòu)和化學角度來看很復雜的礦物中,"瑪麗亞說:“我們的團隊大約在兩年前提出了這個想法,還有其他更簡單的晶體可以識別出這種有用的現(xiàn)象,因為有一些線索讓我們提出了這種可能性。說‘鐵電體無處不在’有點像玩文字游戲,但它捕捉到了我們周圍有給我們提示的材料的想法,而我們很長一段時間都忽略了這些提示。"
Trolier-McKinstry 的研究生涯主要集中在鐵電體上,包括尋找具有不同特性的更好的鐵電材料。她指出,德國基爾大學于 2019 年在氮化物中發(fā)現(xiàn)了這種令人驚訝的鐵電材料中的第一種,但她和瑪麗亞在氧化物中表現(xiàn)出類似的行為。
Trolier-McKinstry 和 Maria 的小組遵循的過程的一部分是開發(fā)品質(zhì)因數(shù),這是一個用于科學分析的數(shù)量,例如分析化學和材料研究,用于表征設(shè)備、材料或方法相對于替代品的性能。
Trolier-McKinstry 說:“當我們研究材料的任何應(yīng)用時,我們通常會設(shè)計一個品質(zhì)因數(shù),說明我們需要對任何給定應(yīng)用進行何種材料特性組合才能使其盡可能有效。" “而這個新的鐵電體系列,它為我們提供了這些品質(zhì)因數(shù)的全新可能性。它對過去我們沒有很好的材料集的應(yīng)用非常有吸引力,因此這種新材料的開發(fā)往往會激發(fā)新的應(yīng)用。 "
鎂取代氧化鋅薄膜的另一個好處是它們可以在比其他鐵電材料低得多的溫度下沉積。
“絕大多數(shù)電子材料都是在高溫的幫助下制備的,高溫意味著 300 到 1000 攝氏度(572 到 1835 華氏度),"瑪麗亞說:“每當你在高溫下制造材料時,都會遇到很多困難。它們往往是工程上的困難,但盡管如此,它們還是讓一切變得更具挑戰(zhàn)性??紤]到每個電容器都需要兩個電觸點——如果我在高溫下準備我的鐵電層"至少在這些接觸中的一個上,在某些時候會發(fā)生不需要的化學反應(yīng)。因此,當你可以在低溫下制造東西時,你可以更容易地整合它們。"
新材料的下一步是將它們制成大約 10 納米厚、橫向尺寸為 20 至 30 納米的電容器,這是一項艱巨的工程挑戰(zhàn)。研究人員需要創(chuàng)造一種方法來控制材料的生長,這樣就不會出現(xiàn)材料缺陷等問題。Trolier-McKinstry 表示,解決這些問題將是這些材料是否可用于新技術(shù)的關(guān)鍵——帶有耗能少得多的芯片的手機,可以持續(xù)運行一周或更長時間。
“在開發(fā)新材料時,你必須找出它們是如何失效的,然后了解如何減輕這些失效機制," Trolier-McKinstry 說:“對于每一個應(yīng)用程序,你都需要決定哪些是基本屬性,以及它們將如何隨著時間的推移而發(fā)展。在你對此進行一些測量之前,你不知道將面臨哪些重大挑戰(zhàn),就這種材料是否在五年內(nèi)最終出現(xiàn)在您的手機中而言,可靠性和可制造性是巨大的。"
來源:賢集網(wǎng),題目略有改動
著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請注明出處。
歡迎您加我微信了解更多信息
微信掃一掃